孙一丹 , 杨晓楠, 张海涛, 张爱军, 庞立欣, 郭艳超, 郭雪涛, 梁欣
林业与生态科学.
录用日期: 2023-12-15
以太行山区经济林种植区为研究对象,通过无人机高光谱遥感数据,构建不同经济林树种高光谱特征数据库,利用CART决策树、最大似然法(Maximum likelihood classifier,MLC)、随机森林(Random forest,RF)和支持向量机(Support vector machine,SVM)等方法,获得高光谱遥感经济林树种最优识别模型。研究结果表明:(1)苹果、杏、柿、樱桃、核桃在550 nm左右的反射峰附近、750~950 nm之间及960 nm附近的水汽吸收带差异明显;(2)简单比值指数(SR)、类胡萝卜素反射指数2(CRI2)、绿波段指数(GRVI)等7种植被指数重要性评分大于0.05,利于经济林树种识别;(3)基于光谱特征波段、植被指数、纹理特征的组合方式通过SVM的分类效果最好,优于MLC和RF算法,总体精度(Overall accuracy,OA)达到95.11%,Kappa系数为0.915 8。综上所述,基于特征波段、植被指数、纹理特征3种特征组合并采用支持向量机(SVM)分类的识别方法,为6种树种识别的最佳识别方法。